- 德国BERNSTEIN博恩斯坦
- 德国BURKERT宝德
- 德国HYDAC贺德克
- 德国E+H恩格斯豪斯
- 德国IFM易福门
- 德国SICK施克
- 德国PILZ皮尔兹
- 德国REXROTH力士乐
- 德国P+F倍加福
- 德国爱普EPRO
- 德国FESTO费斯托
- 德国HAWE哈威
- 德国SAMSON
- 德国TURCK图尔克
- 德国BALLUFF巴鲁夫
- 德国STAUFF西德福
- 德国KUBLER库伯勒
- 德国SOMMER-AUTOMATIC索玛
- 德国SCHMERSAL施迈赛
- 德国BRETER必得
- 德国Aventics安沃驰
- 德国Siemens西门子
- 德国GSR
- 德国豪斯派克
- 德国兰宝
- 德国ARI艾瑞
- 德国FAULHABER
- 德国HBM
- 德国DI-SORIC
- 德国EMG
- 德国VSE
- 德国TR帝尔
- 德国IPF
- 德国KRACHT
- 德国NETZSCH耐驰
- 德国BAUMER-HUBNER霍伯纳
- 德国MICRO EPSILON
- 德国HYDROPA
- 德国DMT
- 德国EHEIM伊罕
- 德国KENDRION康德瑞恩
- 德国EBMPAPST依必安派特
- 德国HIRSCHMANN赫斯曼
- 德国GESTRA杰斯特拉
- 德国PROMINENT普罗名特
- 意大利ELTRA意尔创
- 意大利ATOS阿托斯
- 意大利GEFRAN杰夫伦
- 意大利OMAL欧玛尔
- 意大利PIZZATO皮扎特
- 意大利CAMOZZI康茂盛
- 意大利MOTOVARIO摩铎利
- 美国SEL
- 美国SUN
- 美国VICKERS威格士
- 美国PARKER派克
- 美国MAC
- 美国ASCO阿斯卡
- 美国MOOG穆格阀
- 美国MOOG穆格
- 美国NUMATICS纽曼蒂克
- 美国FAIRCHILD仙童
- 美国Posi-flate
- 美国pulsafeeder帕斯菲达
- 美国Banner邦纳
- 美国MEGGER
- 美国ROSEMOUNT罗斯蒙特
- 美国SENSOREX山瑟力士
- 美国SANDPIPER
- 美国Oilgear奥盖尔
- 美国DRC
- 美国米顿罗
- 美国BEI
- 美国MKS
- 美国ROSS
- 美国DENISON丹尼逊
- 英国NORGREN诺冠
- 英国LAND蓝德
- 英国MOBREY莫伯蕾
- 日本CKD喜开理
- 日本TOYOOKI丰兴
- 日本DAIKIN大金
- 日本YUKEN
- 奥地利E+E
- 其他品牌
- 德国P+F传感器
- 其它传感器
常见传感器的应用领域和工作原理
1.按照其用途,传感器可分类为:
压力敏和力敏传感器 位置传感器
液面传感器 能耗传感器
速度传感器 加速度传感器
射线辐射传感器 热敏传感器
24GHz雷达传感器
2.按照其原理,传感器可分类为:
振动传感器 湿敏传感器
磁敏传感器 气敏传感器
真空度传感器 生物传感器等。
以其输出信号为标准可将传感器分为:
模拟传感器——将被测量的非电学量转换成模拟电信号。
数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。
膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。
开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。
在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。它们中的那些对外界作用zui敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。从所应用的材料观点出发可将传感器分成下列几类:
(1)按照其所用材料的类别分
金属、聚合物、 陶瓷、混合物
(2)按材料的物理性质分
导体、 绝缘体、 半导体、 磁性材料
(3)按材料的晶体结构分
单晶、 多晶、 非晶材料
与采用新材料紧密相关的传感器开发工作,可以归纳为下述三个方向:
(1)在已知的材料中探索新的现象、效应和反应,然后使它们能在传感器技术中得到实际使用。
(2)探索新的材料,应用那些已知的现象、效应和反应来改进传感器技术。
(3)在研究新型材料的基础上探索新现象、新效应和反应,并在传感器技术中加以具体实施。
现代传感器制造业的进展取决于用于传感器技术的新材料和敏感元件的开发强度。传感器开发的基本趋势是和半导体以及介质材料的应用密切关联的。表1.2中给出了一些可用于传感器技术的、能够转换能量形式的材料。